

AQA Physics GCSE 4.1.1 - Energy Changes in a System

Flashcards

What is the equation for kinetic energy? Give SI units for all quantities involved.

What is the equation for kinetic energy? Give SI units for all quantities involved.

 $\frac{1}{2}$ m v²

1/2 x Mass x (Velocity)²

Energy (J), Mass(kg), Velocity(m/s)

What is the equation for elastic potential energy? Give SI units for all quantities involved.

What is the equation for elastic potential energy? Give SI units for all quantities involved.

$\frac{1}{2}$ k x²

1/2 x Spring Constant x (Extension)²

Energy (J), Spring Constant (N/m), Extension(m)

What is the equation for gravity potential energy? Give SI units for all quantities involved.

What is the equation for gravity potential energy? Give SI units for all quantities involved.

mgh

Mass x Gravitational Field Strength x Height

Energy (J), Mass(kg), Gravitational Field Strength (N/kg),

Height (m)

DOG PMTEducation

www.pmt.education

Define the 'Specific Heat Capacity' of a substance.

Define the 'Specific Heat Capacity' of a substance.

The amount of energy needed to raise the temperature of 1 kilogram of a substance by 1 degree Celsius.

State the units for Specific Heat Capacity.

State the units for Specific Heat Capacity

J/°C/kg

Joules/Degree Celsius/Kilogram

What is the definition of 'Power'?

What is the definition of 'Power'?

The rate at which energy is transferred (or rate at which work is done).

State **two** equations for power. Give SI units for all quantities involved.

State **two** equations for power. Give SI units for all quantities involved.

power = energy transferred/time power = work done/time

Energy (J), Work Done (J), Time (s)

What is the unit of power?

What is the unit of power?

Watt (W)

Two motors lift the same mass through the same height. Motor A does this in half the time of Motor B. Which dissipates the most power?

 $\mathbf{\mathbf{D}}$

PMTEducation

Two motors lift the same mass through the same height. Motor A does this in half the time of Motor B. Which dissipates the most power?

Motor A.

The energy transferred is the same but the time taken is less (P=E/t).

Describe the energy changes involved when a ball is thrown upwards and then returns to its starting position. Ignore air resistance.

Describe the energy changes involved when a ball is thrown upwards and then returns to its starting position. Ignore air resistance.

- Upwards: KE is converted to GPE
 - Peak: Maximum GPE, zero KE
- Downwards: GPE is converted to KE

www.pmt.education

KE (Kinetic Energy), GPE (Gravitational Potential Energy)

DOG PMTEducation

Describe the energy transfers for a bungee jumper.

Describe the energy transfers for a bungee jumper.
When falling, the GPE is converted to KE of jumper

- As the cord tightens, KE is converted and stored as Elastic Potential Energy (EPE)
 - At lowest point, the jumper's initial GPE equals the EPE stored in the cord

Explain why a bungee jumper slows down once the cord begins to stretch.

Explain why a bungee jumper slows down once the cord begins to stretch.

- Kinetic energy decreases since it is converted to elastic potential energy
- Since KE is proportional to (velocity)², as KE decreases, so does velocity.

Give examples of chemical energy stores.

Give examples of chemical energy stores.

Food Fuel (eg. wood, coal, petrol) Batteries

State 4 different stores of energy.

State 4 different stores of energy.

Kinetic Energy Gravitational Potential Energy Elastic Potential Energy Chemical Energy

